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Nonlocal Yukawa Interaction and Fermion Mass- 
Scale Nonlocality 

K h .  N a m s r a i  l 

Received October 27, 1995 

A nonlocal Yukawa interaction between the Higgs boson and the fundamental 
fermions is introduced. A simple form of this interaction allows us to calculate 
a particular mass-scale nonlocality for all fundamental fermions. A prediction is 
given for the mass of the Higgs boson (mH ~- 200 GeV). 

The existence of a minimum observable length in string theories (Kato, 
1990) and evidence suggesting the existence of fundamental length scales in 
quantum gravity (Garay, 1994) suggest that the construction of a nonlocal 
quantum field theory (NQFT) (Namsrai, 1986; Efimov, 1977) that possesses 
a fundamental scale becomes an attractive and important question (Kleppe 
and Woodard, 1992; Moffat, 1991; Evans et aL, 1991). 

Manifestly nonlocal actions for NQFT contain derivatives of infinite 
order and necessarily contain a scale parameter dimension of length. An 
old version of these approaches is the Yukawa bilocal or nonlocal fields 
(Yukawa, 1950). 

Recently, the success of the standard model of the electroweak theory 
has indicated that the Yukawa interaction of Higgs bosons with fundamental 
fermions plays an important role in understanding the mass scales of fermions 
and their origin through the Higgs mechanism. 

In this paper we study the nonlocal interaction between Higgs bosons 
and fermions and derive their mass scale of nonlocality. 

The question of the mass spectrum of elementary fermions, leptons and 
quarks, is an important problem in modern physics. Some discussions of this 
problem can be found in Nambu (1952), Dirac (1962), Fritzsch (1977, 1978), 
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Georgi and Jarslkog (1979), Dimopoulos et al. (1992a,b), Raby (1992), Sirlin 
(1994), and Rosen (1995), and references therein. Here we show that in 
particle physics the masses of elementary fermions are not distributed ran- 
domly, but one can predict their mass ratios within the nonlocal method. It 
turns out that the mass ratios are not dependent on the concrete forms of the 
Yukawa interaction. We demonstrate this by using a simple scheme where 
fermions t~i (i = e, I.z . . . . .  u, d . . . . .  t) interact with the Higgs boson ~H(x) 
through some nonlocal (Namsrai, 1986; Efimov, 1977) or averaged (Reuter 
and Wetterich, 1993) interaction of the Yukawa scalar form 

= F i f  d4yl d4y2 Kt(yt)Kt(y2)~i(x - Yl - Y2)~i( x - Y~ - Y2) Li,(x) 

x [~H(x - y l )  + ~H(x - y2)] (1) 

or in differential form 

Li.(x)  = Fi~i (x)+i (x)+H(x)  (2) 

The latter corresponds to the assumption that the Higgs boson carries nonlocal- 
ity only: 

d~n(x) = f d4y Kt(x - Y)q~n(Y) = K(Ul2)q~n(x) (3) ~H(x) 

where Kt(x) = K(c3lZ)~A)(x) is the generalized function (Efimov, 1977). For 
the cases (2) and (3), the propagator of  the Higgs boson takes the form 

DH(x) -- 1 I d4p e-ip~ V"(-P21Z) 
(2.rr)4i m 2 _ p2 _ i,~ (4) 

where Vm(Z) = KZm(Z), and Kin(z) is the Fourier transform of the generalized 
function in (3). Without loss of  generality we choose a form factor of the type 

Vm(-p212) = exp - ~  (m~ - p2) (5) 

This form factor decreases rapidly in the Euclidean momentum space, the 
physical meaning of which is that it changes the Yukawa potential at short 
distances by the formula 

g e - " H r ~ - g - ~ - [ 2 s h m H r + e - " H r d p ( ~ m H l - 1 )  (6) 
4'rrr 8'rrr 

where qb(x) = (2/,/-~) f6 dt exp(- f l )  is the probability integral. 
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The latter is obtained by using the well-known relation 

- g I 
U(r) (2,rr)3 d3p eiprD(p 2) 

between the potential (for example, Coulomb or Yukawa) of interacting 
particles and the propagator of the particle (photon, or scalar particle like 
the Higgs boson) carrying the interaction between them in the static limit. 

Generally speaking, in ( 1 ) and (2) the coupling constants Fi are arbitrary 
quantities (Kobayashi, 1995). 

Formally, our Lagrangian (2) is reminiscent of the local Yukawa 
interaction 

Li.(x) = -~iQi(x)  Qi(x)q~H(x) 

with the coupling constants 

(7) 

mi (8) 
"Yi = g 2Mw 

for the minimal standard model, where one Higgs doublet is considered and 
there are no flavor-changing Higgs-mediated interactions. 

In (7) and (8), Qi(x) are the fermion fields and g is the SU(2) gauge 
coupling constant. For definiteness, we suggest that 

Fi = ~'iq( (9) 

where q~ are arbitrary quantities. Without loss of generality, in order to obtain 
a concrete mass scale of nonlocality for fermions, we use the following 
particular choices: 

qf.~ = 1 for light leptons e, p~ 

qf = v/~ for "r-lepton 

qf,s.d.c = v/~ for light quarks u, d, s, c 

qfb = v/~ for b-quark 

3 
q( = - ~  for t-quark (I0) 

These values give the mass ratios obtained below. It is quite possible that 
quantum numbers like (10) may be associated with a deeper (super)symmetry 
which could be broken [for example, U(I) family symmetry] in interactions 
of the fermions with the Higgs boson. The latter distinguishes them by 
different values of their "charge" q(. We call it the "mass" charge of fermions. 
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The next step is to calculate the mass operator for fermions by using 
the Lagrangian (2) with coupling constants (9) and (10). Since this coupling 
constant is small, the perturbation theory works very well. A low-order 
diagram giving the contribution to the mass operator is sketched in Fig. 1. 

Thus, the matrix element corresponding to the diagram (Fig. 1) has the 
standard form 

f VM(-kZl ~) mi + fi + [¢ r/Z a , p  . . . . . .  
~ , i ( P )  - -  (2.rr)4i m2 _ k 2 ~ - _  (p  + k-)2 

r2m, 1 f-~-i= d~ v(~) (m/zlZ)e ~r 1 
16"rr 2 2i J-[3+i~ ~ sin ar/~ r(1 + ~) F(t~, m/z, mH) 

01) 

where 

F(I~, m~, mh) F(I  - 1~) 

87 i = mA 
m~, 

dx (1 - x)-~(1 + x)[1 + (8 - 2)x + xZ] ~ 

is the regular function in the half-plane Re ~ > - 1 .  In (11) we have used 
the Mellin representation for (4) and (5) with function v(~) = 2-2~/F(1 + 
~). After a simple calculation of  residues with the assumption 8 -I < <  1, 
m/zl 2 < 1, one gets 

3 F/zmi ln(mulf3,a) 8 m i  = m o i  - m i  = - ~ , i ( m )  - 1 6 7 r  2 (12) 

where 

a = 0.788, 
1 rn 2 ] 

13i = exp 18 m~ (1 - 6 In 8i) 

/ \ 

p /7. 
b 

Fig. 1. Diagram of the self-energy of a fermion in the nonlocal Yukawa interaction model. 
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From (9) and (12) it is obvious that the coefficient of the function 

~mi 3 g2 
m 3 = 0-i = (qf)2p ln(mHla)  ' p _ 16"rr 2 4M 2 (13) 

does not depend on the concrete value of fermion mass and has a universal 
constant dimension of area. This fact leads to the assumption that equality 
(13) may be conserved for different fermions with the fixed condition 

mill  = mill (no summation) 

li = A / m i  (14) 

where A is a universal constant within the concrete regularization scheme, 
i.e., the regularization parameter [or "size" of the ~bH(X) boson in our case] 
l should be chosen as 

l = m--L li (no summation) (15) 
mH 

in the calculation of the quantity 0-i for each fermion case. The constant A 
is chosen in such a way that the mass formula is valid. 

In the potential force language, the assumption (15) means that if other 
particles with mass mi are near the Higgs bosons, there is a mutual referential 
mass-dependent force between them due to the potential (6) with the parameter 
(15) and the change g --) Fi given by (9). Thus, the assumption 

20-i(i = Ix) = 0-, + 0-e 

with the choice of "mass" charge (10) yields 

m J m ,  = 3(m.r/m~) 3'2 

In this case, the parameter A is A t = 1.27. The equality 

200. = ob + 0-e 

m J m  e = 2 ( m J m ~ )  6/5 

= 1.269. 
Analogously, the mass ratios 

/ m  \6/5 [mb,~4/5 m r too. 
m--~ = 1 4 / ~  ) ' m ,  - 8 ~ - ~ )  , "" - -  8 

m .  \ m  U 

gives 

for which A = A2 

(16) 

(17) 

(18) 

(19) 

(20) 
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m~ = [mb\ 3/5 m, /m,\ 
m, - 4/m-7 ) ' 

m .3/4 

mls 

follow from the equations 

20-~ = 0-, + 0-~, 3(%, - -  O ' u )  = 2 ( 0 "  b - -  O ' T ) ,  

(m__ E 
ms 2 \mT/  

2or, = c% + or,, 

2Ors = 0-0 + o-d, 20-c = 0-, + 0-,,, 20-, = 0-h + 0-,, 20-, 

respectively. For all these relations universal constant is 

A - -  I/a = 1.27 

(21) 

(22) 

= 0-.r + 0-~t 
(23) 

(24) 

which provides assumptions (14) and (15), as it should. 
The ratios (17) and (19)-(21)  are calculated by knowing only the mass 

of two particles, say the electron and muon. Why do two electrons exist in 
nature? The simple answer is that both are needed in the first cycle of  mass 
hierarchy to set up the whole mass spectrum of  the fundamental fermions. 
They are shown in Table I (in MeV). 

Comparing these quantities with lepton and quark mass listings (Review 
of  Particle Properties, 1994), we observe full agreement with the standard 
theory and experiments. For example, while the experimental value is (Abe 
et al., 1995; Abachi et al., 1995) m t = 176 _+ 8 GeV, in our case we have 
175.9 GeV, and while a recent computation gives a b-quark pole mass of  
4.94 +_ 0.15 GeV, in our case we have 5.042 GeV. From the heavy quark- 
effective theory (HQET) it follows that mb -- mc = 3.4 GeV, while the mass 
ratios give 3.455 GeV. In lowest order of  the chiral perturbation theory m , /  
md = 0.56 and ms~rod = 20.1, while in our case we find 0.51 and 19.7, 
respectively. The quark masses for light quarks u, d, and s discussed so far 
are often referred to as current quark masses and the HQET mass is not the 
same as the pole mass. 

Table 1. Fermon Masses (MeV) 

111 e DI~. In~ t n  u Dl d I n  s DI c Ftl b I n  t 

0.51 l 105.658 1776.1 5.7 I 1.2 219 .8  1587.0 5042. I 175,895.6 
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Now let us consider the standard model in which the fermions form 
three families: re, e, u, and d; v~, ~, c, and s; and v,, % t, and b. The left- 
handed quarks are grouped into SU(2) doublets, 

Q,,L= d. 

where a labels the family (a = l, 2, 3). The right-handed quarks are SU(2) 
singlets, Uon and dan. The left-handed leptons are grouped in a doublet 

\e%1 L 

The right-handed electron e~R is an SU(2) singlet. Gauge-invariant Yukawa 
couplings such as 

- -  e - -  h~bQaLdOdbR + habL~Ld~eh R + h.c. (25) 

can be introduced to give masses to the charge-l/3 quarks and the leptons. 
The term 

h~bQ,LC~cUbe + h.c. (26) 

gives the mass formula to the charge-2/3 quarks. In (25) and (26) qb and +~ 
are the Higgs doublet scalars. In the standard model, the self-energy diagram 
of Fig. 1 takes the form (say, for the t-quark) shown in Fig. 2. 

Matrix elements corresponding to these diagrams (Fig. 2) acquire the 
form 

_ g~tH ( Vm(-k212) ,£b(p) (2~)4i j d4p 3--- T.2-- • - -  mh - k - t~ 

and 

1 +Y5 m b + f i + [ ~  1 +Ys  
2 m ~ , - ( p + k )  2 -  i~ 2 

(27) 

. . d  

qD o~" 
m 

I - - "  ~ \ 

/ ,,, / 

Fig. 2. Self-energy diagram for the quark in the standard model. 

_ g~n f 4 V,,,(-kZF) 1 +'ys  m , + p  + /~ 1 +~/s (28) 
~(p)  (2,rr)4i d P m R _  k 2 -  ie 2 m ~ -  (p + k) 2 -  i~ 2 
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Here we have used the nonlocal regularization method (Fritzsch, 1977, 1978; 
Georgi and Jarlskog, 1979) and ghtH and gttH are coupling constants of the vertexes 
-fftub+- and Ktu,qb °*, respectively. Simple calculation yields a mass contribution 
to the t-quark: 

am s' - ~tc[Xf(m,) + X~(rnt)]uRt + h.c. 

_ (qf)2 9" ln(mnaSt~ sq) 
16,rr 2 

X { g~mmb/(qf)2p st + g~Hm,/(q()2p s'} (29) 

if and only if the ratio 

m, ( mHf. l~'"'h/~'H"' ' 
- -  -- - -  ¢ = 0.7788 (30) 

mH~ \ mb ] 

is valid. Here 

a" = 0.667 

{ 41mh 2 l mt 2 } 
6; l = e x p  - m--~H(1--21ngb)- -~m--~H(1--21ng ' )  

1 
p,, = ~ P 

and p is given in (13). 
Now we redefine the quantity (13) in the standard model as 

o-~' = ~m~' /{ g~,HrnJ(qf)2p" + g~Hm/(qf)2p st} 

_ (qf)2 pS, ln(mHaSt~,l) (31) 
16,rr 2 

Analogous calculations for other fermions are carried out, which lead to the 
redefinition of  the corresponding quantities ~ ' .  Putting ~ '  into equations 
(16), (18), (22), and (23) with the condition (14), where 

A --..> A" ~ 1/a" = 1.5 (32) 

one can obtain the same mass ratio formulas as in (17) and (19)-(21). The 
result is not changed in the standard model because the structure of the 
logarithm function in (29) and (31) is also conserved in this case. 

It is evident that powers and numerical coefficients (as parameters of  
the theory) in relations (17) and (19)-(21) are defined uniquely by ratios of 
"mass" charges (10) and by conditions (14) and (15) using (24) and (32) and 
recent theoretical results and experimental data on fermion masses. 
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We see that the mass ratios are scaling invariant with respect to the 
transformation F; ---) F~ = hFi, where h is an arbitrary number, and that 
equalities (24) and (32) minimalize expressions (12) and (29). The latter 
means that mass values of fermions in the Lagrangian of the theory are "pole" 
(or potential) ones and the mass ratios obtained for them are valid. 

Now we calculate the contribution to the t-quark mass ratios in (20) 
and (21) due to the Higgs boson mass by formulas (12) and (31). This 
contribution changes the mass of the t-quark as 

I , } m,(g = O) ~ m,(g) = m,(O) exp 18 m Y  (1 - 6 In g,) (33) 

Such a change leads to the mass ratio, for example, 

m__2 = 14Im,(~)]6/5 Fmexp-]6/Sfm,(O) [ 1 _ 6 m 2 ( 0  ) ]}6/5 
me L j = e x p  1 m---~H (1 -- 6 In ~t) 

The experimental value (Abe et al., 1995) of m~ xp = 176 --- 8 GeV 
almost coincides with mr(O) shown in Table I, and therefore 

F 
m~ xp = 176 - 8 = m,(0)[1 

from which it follows that 

and 

1 m2(0)  q 
(1 - 6 In 8 , ) /  (34)  

18 m 2 J 

mH = 211 GeV (35) 

mH = 246 GeV (36) 

for the cases (12) and (31), respectively. 
From (30) it follows that the value of (35) gives r = g,,H/g,bH ~ 4/5. If 

r = I, then mH = 205 GeV. Moreover, the ratio (30) yields the upper bound 
mH <~ 226 GeV. 

Note that one can derive the mass ratios (17) and (19)-(21) in the more 
general case when the coupling constants of the Yukawa interaction (2) or 
(25) and (26) are arbitrary, as long as there exist some relationship between 
them. For instance, the mass ratio equation 8mihni - ~m~hnk = ~mj/mj - 
~mi/mi for any three fermions i, j, k using (12) and conditions (14) and (15) 
decomposes into two parts: 

2 "~ rni/m~ = c(rnj/mi) rJ /rr 

m i / m  k ---- c(mj/mi)r}/r?(Aa)2-r~./r~-1)2/r? 
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2 9 Assuming i = Ix, k = e , j  = -r, Aa = 1, c = 3, and F,/Fb. = 3/2, we get 
the ratio (17) and so on. These equations are universal. In particular, even 
if all the coupling constants Fi are the same, the mass ratios (17) and ( 19)-(21) 
without any powers are valid with different coefficients: 37/3, 13/3, 35, 
20/3, 4, 7/9, 8/3, 3, and 41/3, respectively. In this case, the masses of the 
fundamental fermions are close to those shown in Table I, namely 0.511, 
105.658, 1771.4, 5.6, 10.1, 198.6, 1614.1, 5041.6, and 175439.3 (in MeV). 
Thus the universality of the mass scales of nonlocality is preserved for all 
cases due to the presence of the scale parameter l in the nonlocal action 
(2) characterizing the mutual referential mass-dependent potential (6) and 
satisfying conditions (14) and (15). 

Finally, it should be noted that in equations (20) and (21) we compare 
lepton and quark masses while ignoring the strong scale dependence of the 
quark masses in QCD. This problem will be considered elsewhere. 
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